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Abstract. The Agreement Problem Protocol Veri�cation Environment
(APPROVE) for the automated formal veri�cation of solutions to agree-
ment problems is presented. Agreement problems are characterized by
the need for a group of processes to agree on a proposed value and are ex-
empli�ed by group membership, consensus and leader election schemes.
Generally it is accepted by practitioners in both academia and industry
that the development of reliable and robust solutions to agreement prob-
lems is essential to the usability of group communication infrastructures.
Thus, it is important that the correctness of new agreement algorithms
be veri�ed formally. In the past, the application of manual proof methods
has been met with varying degrees of success, suggesting that a less error
prone automated tool approach is required. Furthermore, an observation
made during a review of such proofs is that a signi�cant amount of e�ort
is invested into repeatedly modeling re-usable themes. The APPROVE
project addresses these issues by introducing a usable Spin based frame-
work that exploits the potential for model re-use wherever possible1.

1 Introduction

The �eld of group communications has become a well established discipline
within distributed systems research. Traditionally, group communications has
been employed in a variety of settings often characterized by some degree of
replication. The recent development of related technologies means that group
communications is now becoming increasingly important in areas such as: Col-
laborative applications and Metacomputing infrastructures. In developing new
group communication systems, researchers are often required to design novel so-
lutions to a set of well known questions that are termed agreement problems [2].
Agreement problems are characterized by the need for a group of processes to
agree on a value after one or more other processes has proposed what that value
should be [7]. Thus, typical examples include group membership, consensus and
election based fault-tolerance algorithms [5].

As the error free operation of agreement algorithms is generally fundamental
to a systems usability, it is important that the correctness of proposed solutions
be determined rigorously. Several formalisms have been applied to accomplish
this task. Birman adopted temporal logic to reason about the correctness of the
virtually synchronous group membership model which was �rst introduced as
part of the seminal ISIS system [4]. Lamport employed numerous techniques

1 APPROVE v1.0 is available from: http://www.james-pascoe.com.
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in the study of consensus [10] as did Hadzilacos, Chandra and Toueg in their
research on failure detectors [6]. Current group communication projects suggest
that one method is emerging as a possible de facto standard. This method is
termed rigorous argument and it is based around the notion that the correctness
of an algorithm can be determined by arguing that four widely adopted invariants
always hold, namely: termination, uniform agreement, validity and irrecoverabil-
ity. There are numerous applications of rigorous argument with two of the more
notable successes being in the Totem [12, 1] and InterGroup [3] projects. Indeed
rigorous argument was used to establish the correctness of the authors recent
work on the design and implementation of the Collaborative Group Membership
(CGM) algorithm (see section 7) [16, 13, 11].

The application of the manual proof methods discussed above have met with
varying degrees of success. The temporal logic proof of the ISIS group mem-
bership service was later found to contain fundamental aws (a caveat that is
discussed in Birman's comprehensive text [5]). In the application to CGM, rig-
orous argument failed to identify a number of design errors despite months of
e�ort invested in applying the technique. These problems were only discovered
during the projects implementation phase and were later attributed to its de-
sign. Although in this instance, rigorous argument failed to identify a number
of design issues, we do not consider the method to be invalid. However, we pos-
tulate that it can be prohibitively diÆcult to achieve the level of rigor required
to instill con�dence in the correctness of a proof by rigorous argument.

Following the completion of the proof, it was pertinent to study the e�ect of
employing CGM with a wireless model of failure. In terms of failure, wireless net-
works di�er fundamentally from wired systems because they exhibit an element
of intermittent connectivity, that is, hosts may become unpredictably discon-
nected for arbitrary periods of time. Thus, in a wireless network, hosts that are
disconnected are indistinguishable from hosts that have failed. Although manu-
ally specifying a wireless model of failure is not complex, it became clear that
integrating and reasoning about it in the original proof was so diÆcult that it
e�ectively meant restarting the process.

This experience motivated an investigation into the feasibility of developing a
con�gurable automated veri�cation environment that could quickly and exhaus-
tively verify the correctness of a proposed solution to an agreement problem.
Through the comparison of previous proofs, it was observed that there exist cen-
tral themes which are modeled repeatedly, albeit in di�erent formalisms. Thus,
additional motivation for the project was to exploit this potential for re-use.
Furthermore, as the formalism adopted varied between di�erent applications,
the possibility of exploiting direct re-use of existing model components was lim-
ited. Thus, we propose the APPROVE framework, its design philosophy being to
provide a con�gurable, extensible, automated veri�cation environment through
which a catalog of previously veri�ed re-usable components can be quickly com-
posed to suit an application. In doing so, the researcher need only model the
algorithm or protocol under test and invoke the automated veri�er to establish
its correctness. The aim is to not only drastically reduce the amount of e�ort and
error associated with developing such proofs, but to also instill a much higher
degree of con�dence in the process and demonstrate the e�ectiveness of formal
tools to more practical communities.



The Agreement Problem Protocol Veri�cation Environment 3

2 Background

A number of other formal techniques to facilitate reasoning about the develop-
ment of group communication systems exist. For example, one of the more no-
table projects is the application of the NuPrl theorem prover (pronounced `new'
program re�nement logic) [24] to the Ensemble group communication system.
Ensemble [18] develops network protocol support for secure fault-tolerant appli-
cations and is the successor to the Horus [23] and ISIS [4] toolkits. An Ensemble
developer composes the required system from a catalog of micro protocols. Each
micro protocol is coded in OCaml (ML) and thus has formal semantics which can
be translated into type theory, that is, the input language to NuPrl. Through
NuPrl, the developer can prove correctness theorems or partially evaluate the
type theory and so automatically perform some optimizations for common occur-
rences. This result is then translated back into ML and reected in the original
implementation.

2.1 Why Spin?

Although in this case, the NuPrl / Ensemble combination is a powerful mecha-
nism for reasoning about micro protocols, NuPrl was not deemed to be a suitable
basis for the realization of APPROVE. This was mainly due to the level of user
interaction NuPrl (and indeed most theorem provers) require. Since one of the
primary project goals was to encourage a greater utilization of formal tools in
more practical communities, it was bene�cial that APPROVE should o�er a `press-
on-the-button' approach. Due to previous experience, we initially considered the
FDR [19] model checker. However, concerns from more practical researchers over
its terse interface meant that Spin [8] was selected instead.

As Spin is stable, well documented and uses a C like syntax, we postulate
that it is ideal for group communications researchers. Indeed papers presenting
the development phases of APPROVE have been well received in other commu-
nities [15, 13]. Furthermore, as the XSpin interface is also very usable, Spin was
ultimately deemed the most suitable platform on which to base APPROVE.

2.2 Spin in Relation to Group Communications

Further motivation for using Spin stemmed from the prior work of Ruys [21,
20]. In his thesis ([21] section 4.11), Ruys provides a pragmatic insight into the
modeling of weak multicast and broadcast protocols using Spin. The distinction
between weak and strong models of group communication, is that all strong
peers are furnished with a view, that is, a formalized notion of membership2.
Thus, APPROVE has leveraged this work and aims to take it one stage further
by investigating a model of group communication that is strong.

2.3 Literate Veri�cation Using noweb

Possibly one of the most central issues to the usability of formal tools, is the
provision for high quality documentation. In an imperative language such as C,
programs can often e�ectively be documented through comments. However, the

2 On page 132 of [21], Ruys alludes to a destination set which could be considered an
implicit form of membership. However, as there is no notion of a view, we conclude
that the membership model is weak.
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inherent power of formal notations such as Promela, often leads to a scenario
where the verbosity and number of comments necessary to convey suÆcient
intuition compromises the readability of the code. Thus, APPROVE was developed
using the literate programming tool noweb [17].

Literate programming was �rst proposed by Knuth [9] as a new programming
paradigm that primarily promoted two philosophies. Firstly, literate program-
ming combines documentation and source into a fashion suitable for reading by
humans, the underlying premise being that the experts insight is more likely to
be conveyed if it is stored alongside the code to which it corresponds. Literate
programming also aims to free the developer from ordering programs in a com-
piler speci�ed manner, that is, when writing a program, the developer need not
initially concern themselves with distracting side issues but instead focus on the
problem in hand. In order to facilitate literate programming, Knuth provided a
tool termed WEB [9] which produced both TEX documentation and PASCAL
code from a �le written in the WEB notation. One ofWEBs drawbacks, was that
it was PASCAL speci�c. This was addressed by Ramsey who produced noweb,
a literate programming tool that embodies the same philosophies, but can be
applied to any language.

In terms of applying noweb to Promela, Ruys has contributed signi�cant
insight in [22, 21]. Thus, through the use of noweb, the researcher is able to read
the APPROVE source code and the corresponding LATEX documentation at all
levels of combination.

3 The APPROVE Architecture

At the highest level, the architecture of APPROVE consists of essentially three
major components (see �g. 1). Each of these is discussed below with the exception
of the test protocol, that is, a Promelamodel of the proposed algorithm. Although
inherently this component can not be provided, APPROVE o�ers a template and
guidance for its construction. As one of the primary bene�ts of APPROVE lies in
its re-con�gurability, extensive investigation of a test protocol becomes simple.
For example, the researcher may wish to examine the veri�cation consequences
of employing a di�erent failure detector in the overall model. Using APPROVE,
this is a matter of modifying the environments con�guration, whereas traditional
manual methods would require extensive alterations.

3.1 The Environment

The environment is the collective term for the entities required to support the
simulation and veri�cation of the test protocol. At this level, global channels
which facilitate message passing amongst the various sub-entities are declared
as are a suite of options which can be used to con�gure APPROVE for a spe-
ci�c scenario. Possibly the most complex environmental component is the Group
Membership Service (or GMS). There are several de�nitions for a GMS, but it
is generally accepted that it has at least the following responsibilities [7]:

1. Providing an interface for group membership changes { The GMS furnishes
processes with a means to create or remove process groups and to join or
leave process groups.
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Client Processes
  − behaviour
  − message exchanges

Failure Definition
  − model
  − detection

  − virtual sync.
Membership

  − gbcast

Protocol

  − termination
  − uniform agreement
  − validity
  − irrecoverability

Invariants

Test

   − Global channels
Environment

   − Configuration options

Fig. 1. The high level APPROVE architecture. It later became clear that the environ-
ment, invariants and test protocol could not be modeled as distinct entities. Although
this has relatively little consequence (other than to mildly complicate the template
for the test protocol), a more realistic illustration would possibly resemble a Venn
diagram. Nevertheless, at a high level, it is considered somewhat more succinct to
diagrammatically express the architecture in the manner shown here.

2. Notifying members of group membership changes { All members of a process
group are noti�ed when a membership change occurs, that is, all processes
are informed when hosts join and leave the group or are evicted because they
have failed.

In addition, the model of group membership o�ered in APPROVE is virtually
synchronous. Virtual synchrony was proposed by Birman [5] in the ISIS toolkit
[4] and through the success of ISIS, has become widely adopted in the �eld.
Virtual synchrony can be e�ectively summarized by the simplifying abstraction
it presents to the developer, namely, that a group of processes all see the same
events in the same logical order. This reduces the design complexity of agreement
protocols since the same algorithms can be executed by all processes.

As with the GMS, client processes exhibit a speci�c behavior in relation to
their operation. Before being admitted to the group, a client must send a join
request message to the GMS. In a virtually synchronous system, membership
change messages are called view change operations and are dealt with di�erently
than in weak group communication systems. In order to guarantee virtual syn-
chrony, messages transmitted in one view must be delivered in the same view, so
a virtually synchronous GMS responds to a view change operation by broadcast-
ing a ush3 message. On reception of a ush message, each client entity delivers
any outstanding messages before signaling the GMS of the ush protocols com-
pletion. On receiving an acknowledgment from all of the group members, the

3 In group communications literature, `ush' messages are sometimes referred to in
relation to the totally ordered message passing primitive gbcast. For more information
on delivery ordered message passing primitives, see Birman [5] (page 266). Note
that the `b' is a legacy label that implies broadcast communication. Possibly a more
suitable label would be `m' (suggesting multicast communication), but this has not
been adopted since all of the literature uses the original terminology.
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FIFO / Atomic
Multicast

Join

GMS

Client 1

Client 2

Client N

Leave

Fail

Client
New

Process group

...
Fig. 2. The APPROVE concept of a group. To manage the size of the state space, the
number of client processes is dynamic and is speci�ed by the NUM CLIENTS ag.

GMS adds the joining process to the membership and the new view is broad-
cast. Once part of the group, an APPROVE client is free to transmit an arbitrary
number of messages to other clients using two group communication primitives,
namely, reliable FIFO multicast (or fbcast) and atomic multicast (or abcast). Re-
liable FIFO multicast states that if a process p transmits a message m1 before
a message m2, then m1 is delivered before m2 at any common destinations, and
p is noti�ed of any message that can not be delivered. The atomic primitive
behaves in the same manner as fbcast, but o�ers the additional guarantee that
either all of the destination processes deliver a given message, or none do. The
motivation for speci�cally selecting this pair of primitives is that FIFO multi-
cast often forms the basis of quiescent failure detection and atomic ordering is
frequently used to transmit the results of agreement algorithms. It is noteworthy
to add, that at any non-deterministic time, a client can either request to leave
the group (in which case the GMS performs a protocol symmetric to the join)
or it can fail.

In some systems, a further responsibility of the GMS is to provide a failure
detector and implicitly, a model of failure. In traditional group communications,
often a fail-stop model of failure is adopted and processes fail by either halting
prematurely or being irrecoverably partitioned away. Currently, only the fail-
stop model of failure is supported by APPROVE, but investigation into a wireless
model and its e�ect on traditional group infrastructures is planned for the near
future. In APPROVE, three failure detection mechanisms are modeled, two in an
independent heartbeat process and the third as part of the client. This not only
reduces the complexity of the GMS, but also provides what is possibly now a
more realistic model. The heartbeat or keepalive mechanisms are protocols that
periodically transmit messages to announce their continued presence. The third
failure detector is a quiescent algorithm that monitors the sessions liveness each
time the reliable fbcast primitive is used to transmit a message.
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4 Modeling APPROVE: Phase 1 (An Ideal System)

The initial phase of the APPROVE realization process developed an ideal model of
group communication; ideal in the sense that nothing was permitted to fail. The
�rst phase developed models for the global aspects, the GMS and the client en-
tities. This section describes each of these presenting select fragments of Promela
code in the form of the following noweb chunks:

7a hPhase 1 list of selected chunks 7ai�
hGlobal channel de�nitions 7bi
hMessage types { the mtype de�nition 8ai
hModeling the view 8bi
hJoin protocol 9i
hFlush protocol 10i

4.1 Global Considerations: Channel and Message De�nitions

Based on the conclusions of Ruys [21], APPROVE uses amatrix of nine channels to
model communication between the various entities. Each client process indexes
into the channel matrix by using an identi�cation number assigned to it at
instantiation by the init process. Individually, each of the APPROVE channels
can be classi�ed into one of the following three categories:

1. General channels { To facilitate communication amongst the group entities.
2. Message guarantees { Channels that model delivery ordering semantics.
3. Failure channels { For co-ordinating failure resolution.

Channels of the �rst group conform to the labeling convention entity `2'
entity, where an entity can be one of: cli = client, gms = group membership
service, hfd = heartbeat failure detector, eh = error handler and em = error
master. An error handler is a process that embodies an instance of the protocol
under test. The error master is an explicit term used to address the co-ordinator
of a protocol, viz. the process which collates and determines the algorithms

7b hGlobal channel de�nitions 7bi� (7a)
chan cli2gms[NUM_CLIENTS] = [BUFFER_SIZE] of { byte }
chan gms2cli[NUM_CLIENTS] = [BUFFER_SIZE] of { byte, int }
/* Channels for communicating primarily outside of the group */

chan cli2hfd[NUM_CLIENTS] = [BUFFER_SIZE] of { byte }
chan hfd2cli[NUM_CLIENTS] = [BUFFER_SIZE] of { byte, int }
/* Channels for querying the heartbeat failure detector */

chan fbcast[NUM_CLIENTS] = [BUFFER_SIZE] of { byte, byte, byte }
chan abcast[NUM_CLIENTS] = [BUFFER_SIZE] of { byte, byte, byte }
chan gbcast[NUM_CLIENTS] = [0] of { byte }
/* Delivery ordering channels */

chan fail = [BUFFER_SIZE] of { byte, int }
chan eh2eh[NUM_CLIENTS] = [NUM_CLIENTS] of { byte, int, int }
chan em2gms = [BUFFER_SIZE] of { byte, int }
/* Failure channels */
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8a hMessage types { the mtype de�nition 8ai� (7a)
mtype = {
JOIN, LEAVE, LEAVE_ACK, FLUSH, FLUSH_ACK, VIEW,
/* Membership messages */
DATA, ACK,
/* Arbitrary data transfer messages */
QUERY, SUSPECTS, FAIL,
/* Failure detector messages */
EL_START, EL_CALL, EL_PROBE, EL_RETURN, EL_RESULT
/* CGM Specific messages */
}

result. Typically, this is then sent to the GMS (using the em2gms channel) which
evicts any failures and distributes the new view.

The second group of channels form the basis of the delivery ordering guaran-
tees. Note that the gbcast channel is synchronous and only carries a single byte.
In practice, often the only messages to be sent using the totally ordered message
passing primitive is the instruction to ush and symmetrically, the acknowledg-
ment from a client that it has completed the protocol. Thus, in APPROVE, the
gbcast channel is only permitted to carry the FLUSH and FLUSH ACK messages.
Conversely, the failure channels provide facilities for announcing failures and
serve as a modeling interface to the researcher. Other channels in this category
deal with communication between the error handlers and provide the error mas-
ter with a means of informing the GMS of those processes deemed to have failed.
All of the APPROVE channels are de�ned with a maximum of three �elds where
the �rst is the message type (e.g. JOIN) and the others are values. Thus, the
message exchange cli2gms[2]!JOIN would correspond to a request from client
2 to join the group.

The APPROVE Message Types In conjunction with the CGM example, AP-
PROVE de�nes sixteen messages (see chunk 8a) which are again split into several
sub-groups:

1. Membership messages { For standard membership changes.
2. Data messages { For quiescent reliable failure detection.
3. Failure messages { For querying heartbeat failure detectors and announcing

failures to the error handler.
4. CGM messages { For co-ordinating the CGM membership algorithm.

As the denotation of each message can be inferred from its name, we do
not discuss the topic further. Additional details can be found in the APPROVE

documentation [14].

4.2 The Group Membership Service
Apart from the roles discussed above, the GMS is also implicitly responsible for
managing the view. As Spin opts to convert bit arrays into arrays of bytes,
APPROVE models the view using the more eÆcient bitvector representation.
Through the unsigned keyword, the size of each value can be set to the number
of clients and so a minimal amount of memory is consumed. Manipulation is
performed using bit-wise operators wrapped in macros.

8b hModeling the view 8bi� (7a)
unsigned view:NUM_CLIENTS=0;
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Algorithm 1: Pseudo-code Outline for the Group Membership Service

Initially view = 0, i = 0;

1. if
2. :: nempty(em2gms) ! em2gms?message ! atomic f update view g; i = 0;
3. do
4. :: ((i < NUM CLIENTS) && (view & (1<<i))) ! gms2cli[i]!FLUSH; i++
5. :: (i == NUM CLIENTS) ! i = 0; break
6. :: else ! i++
7. od;
8. Collect the FLUSH ACK messages ! atomic f broadcast the new view g
9. :: else ! skip
10. �;

11. do
12. :: (i < NUM CLIENTS) ! repeat lines 1{10, but substitute cli2gms[i] for em2gms
13. :: (i == NUM CLIENTS) ! i = 0; goto line 1
14. od

Fig. 3. Pseudo-code Outline for the Group Membership Service

The GMS executes continuously and is instantiated by the init process.
In its idle state, the GMS waits for a message to arrive on one of its input
channels. Regardless of whether a client wishes to join, leave, or the error master
is reporting evictions, the GMS behaves in essentially the same manner. On
reception of a message, the GMS initially updates its internal view. Then, the
FLUSH message is sent to all operational clients instructing them to perform
the ush protocol (see chunk 10). Each client processes all of the outstanding
messages in its channels before returning a FLUSH ACK to the GMS. Once all of
the clients have completed the ush, the GMS distributes the new view and the
operation is complete. Note that priority is given to dealing with membership
changes originating from the error master, that is, the GMS explicitly checks
for messages on the em2gms channel before dealing with standard membership
operations.

The length of the Promela GMS speci�cation prevents its inclusion as a lit-
erate programming chunk here. Instead, a pseudo-code outline of the algorithm
is given in �g. 3.

4.3 The Client Process
The APPROVE client process is intended to model a typical group participant.
Each client process executes a join protocol and once admitted to the group, is
free to exchange an arbitrary number of messages with the other group members
or leave the session and terminate its execution. The simplistic join protocol
executed by all of the clients is shown in chunk 9 below:

9 hJoin protocol 9i� (7a)
cli2gms[id]!JOIN -> gms2cli[id]?eval(VIEW),view ->
printf("APPROVE (client %d): view received %d.\n",id,view);

Recall that after requesting admission to the group, the GMS broadcasts the
instruction to FLUSH. If the session is empty, a singleton view is immediately
returned to the client. Otherwise, each client executes the ush protocol:
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10 hFlush protocol 10i� (7a)
if
:: gbcast[id]?eval(FLUSH) ->
do
:: fbcast[id]?receiver_set,from,msg ->
if
:: (msg != ACK) -> fbcast[from]!from,id,ACK
:: else -> skip

fi /* do the same for the abcast channel */
:: gbcast[id]?_
:: gms2cli[id]?_,_
:: (empty(fbcast[id]) && empty(abcast[id]) && empty(gbcast[id]) &&
empty(gms2cli[id])) -> gbcast[id]!FLUSH_ACK; gms2cli[id]?eval(VIEW),view;
break

od;
printf("APPROVE (client %d): flush completed.\n",id)
:: empty(gbcast[id]) -> skip
fi;

Once part of the group, each client is free to either leave the session or
exchange an arbitrary number of f/abcast messages with other processes. As it
is not meaningful to model message delivery ordering semantics in a failure free
environment, the topic was addressed in the second modeling stage. Thus, at this
point, APPROVE was tested and debugged before the second phase commenced.

join protocol

flushing

view distribution

Fig. 4. A message sequence chart depicting a typical simulation of the initial model
using XSpin. The �rst line is the init process which after invoking the GMS and two
clients, does not interact further. The �rst client (process 2) joins the empty session
and so immediately receives its view at time step 34. The second client (process 3) joins
the group, but has to wait for the �rst client to ush before the new view is distributed.
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5 Modeling APPROVE: Phase 2 (Introducing Failure)
In traditional group communications, the notion of failure is twofold. In the �rst
instance, APPROVEmust incorporate at least one failure model, viz. a description
of exactly how a process behaves when it fails. The second aspect is the concept
of detection, that is, by what means are process failures discovered. As before,
select Promela fragments will be presented in the following literate programming
chunks:

11a hPhase 2 list of selected chunks 11ai�
hFail-stop model of failure 11bi
hSelecting a random receiver set 12ai
hFIFO delivery and quiescent failure detection 12bi
hAtomic delivery and quiescent failure detection 12ci

5.1 The Fail-Stop Model of Failure
Traditional group communications software models failure as a primary parti-
tion fail-stop event, that is, when a process fails it either prematurely halts or
is irrecoverably partitioned away from the group. Modeling this in APPROVE

essentially means adding a further non-deterministic clause to the main do loop
in the client process. Note that clients are only permitted to fail when no other
operation is in progress. For example, a client may send a message and then fail,
but not fail during a message exchange. The reason for this abstraction is to
eliminate failure events that would not be handled by the protocol under test
e.g. a failure during group admission would be dealt with by the join protocol
and not by the error handler.

Intuitively, one would expect to model a fail-stop failure as a simple termi-
nation event. However, as Promela abstracts away from the low-level details of
a processes execution status, some form of external `announcement' is required
as a testable interface to the failure detectors. This was incorporated as a global
bitvector mask (termed the failed members mask) which operates in the same
manner as the view, but denotes failure rather than membership. Thus, we have:

11b hFailure model 11bi� (11a)
/* main client do loop (other non-deterministic clauses) */
:: (FAIL_MODEL == FAIL_STOP) ->
atomic { failed_members_mask = failed_members_mask | (1<<id); }
printf("APPROVE (client: %d): failed.\n",id); break

5.2 Delivery Ordering Primitives and Quiescent Failure Detection
The pertinent question of how to model the delivery ordering primitives and
quiescent reliable failure detection is now addressed. A quiescent reliable failure
detector treats reliable communications as probes of the sessions liveness. The
main advantage of a quiescent mechanism over a periodic heartbeat algorithm
is that a quiescent strategy will not incur any processing overhead in a failure
free environment. Conversely, the main drawback (and indeed a fundamental
distinction) is that quiescent failure detection is arbitrary and o�ers no timely
properties.

In order to model an arbitrary message exchange, each client must be fur-
nished with the ability to select a receiver set at random. In APPROVE, this is
achieved using a rationalized random number generated by the inline random
de�nition suggested by Ruys [21].
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12a hSelecting a random receiver set 12ai� (11a)
random(receiver_set,(2^NUM_CLIENTS)-1);
receiver_set = receiver_set & view;
if
:: (receiver_set & (1<<id)) ->
receiver_set = receiver_set ^ (1<<id)

:: else -> skip
fi
/* rationalize the value into a valid destination set */

Modeling the reliable FIFO primitive is a case of selecting a random receiver
set and iteratively inspecting each of its members. If a host is a member of
both the receiver set and the failed members mask, then a new failure has been
detected and is announced through the fail channel. Note that duplicate failure
reports are ignored by the error master. If a recipient has not failed, then a DATA
message is exchanged for an acknowledgment.

12b hFIFO delivery and quiescent failure detection 12bi� (11a)
i = 0 ->
do
:: ((i < NUM_CLIENTS) && (receiver_set & (1<<i)) ->
if
:: (failed_members_mask & (1<<i)) ->

fail!FAIL,i; i++ /* announce the failure */
:: else ->

fbcast[i]!DATA,id,receiver_set; fbcast[i]?eval(ACK),_,_; i++
fi
:: (i == NUM_CLIENTS) -> break
:: else -> i++
od

The di�erence between the model for the reliable FIFO primitive and the
atomic algorithm is that the latter will initially check that none of the recipients
have failed. If this is the case, then an atomic message exchange is executed.
Conversely, the operation is aborted, and the failures are reported.

12c hAtomic delivery and quiescent failure detection 12ci� (11a)
i = 0 -> atomic { if
:: (receiver_set & failed_members_mask) ->
do
:: ((i < NUM_CLIENTS) && (receiver_set & (1<<i)) &&

(failed_members_mask & (1<<i))) -> fail!FAIL,i; i++
:: (i == NUM_CLIENTS) -> break
:: else -> i++
od
:: else -> i = 0 ->
do
:: ((i < NUM_CLIENTS) && (receiver_set (1<<i))) ->
abcast[i]!DATA,id,receiver_set; abcast[i]?eval(ACK),_,_; i++

:: (i == NUM_CLIENTS) -> break
:: else -> i++
od
fi }
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5.3 Heartbeat Failure Detection

Heartbeat failure detectors (HFDs) are used in many systems (though not in
CGM) and so were deemed essential to the APPROVE catalog. Heartbeat failure
detection di�ers from quiescent mechanisms in one important aspect, namely,
HFDs are triggered periodically. In Spin, the notion of time is implicit, that is,
it is not possible to reason about speci�c durations and so the Promela model
of an HFD has to abstract away from its traditional implementation. Note that
the key distinction preserved by APPROVE is that heartbeat failure detection is
independent from the pattern of communication, that is, an HFD detects failures
on the basis of a loop, whereas quiescent mechanisms detect failures arbitrarily.

In a similar vein, the mechanism by which HFDs detect failure is also modeled
di�erently from a traditional implementation. It is generally accepted, that HFDs
can be categorized into two groups: ping (or explicit acknowledgment) and `I am
alive'. When using a ping HFD, each group member will periodically broadcast
a message to all others before awaiting a series of acknowledgments. If after
waiting Æt units of time an acknowledgment has not been received, then the
host it refers to is suspected of failure. Similarly, a process using an `I am alive'
HFD will periodically broadcast a message announcing its continued presence to
the group. If such a message is not received in Æt units of time, then again the
corresponding host becomes a failure suspect. In terms of triggering the HFD,
it is not possible to e�ectively reason about a speci�c timeout duration (Æt). In
APPROVE, two heartbeat failure detectors are modeled. The �rst is a general
model which polls the value of the failed members mask for changes, whereas,
the latter pends on the failure event. This triggering abstraction results in a
signi�cant decrease in interleaving and thus reduces the models overhead.

6 Verifying APPROVE

The development of the heartbeat failure detectors concluded the initial AP-

PROVE modeling phases. Subsequently, the question of instrumenting the model
for the purposes of veri�cation was considered. One of the bene�cial aspects of
the project was that the termination, uniform agreement, validity and irrecov-
erability invariants were known from its inception. As with group membership,

Algorithm 2: Pseudo-code Outline for the Heartbeat Failure Detector (Pending)

Initially old failed members mask = failed members mask, i = 0;

1. if
2. :: (old failed members mask != failed members mask) !
3. i = 0;
4. do
5. :: (failed members mask & (1<<i)) && (!(old failed members mask & (1<<i)))
6. ! fail!FAIL,i; i++
7. :: else ! i++
8. od;
9. old failed members mask = failed members mask; goto line 1
10. �

Fig. 5. Pseudo-code Outline for a Pending Heartbeat Failure Detector
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there are numerous de�nitions for the invariants listed here and so, the most
generally accepted were adopted [2, 7]:

1. Termination { In every admissible execution of the test protocol, a result is
eventually assigned for every process that has not failed.

2. Uniform Agreement { Agreement as de�ned by [2] states that in every ex-
ecution, if a result is set by all live processes, then that result is an agreed
common value. However, it is feasible for a failing and a live process to settle
on di�ering values immediately before the failing process crashes. Uniform
agreement states that this can not be the case, i.e. even for processes that
fail, if they have received a value, then that value must be the same as the
other results.

3. Validity { If N processes have the same input, then any value decided upon
must be the same.

4. Irrecoverability { When a result is set, then that value can not be changed.

Termination is tested through the introduction of a series of end state labels in
combination with an explicit idle state in the error handler. Thus, if a veri�cation
terminates and any of the error handlers are not idling, then Spin detects and
reports the violation. Conversely, the other invariants are somewhat interrelated;
thus, we discuss these issues in combination. Note, that the noweb chunks referred
to throughout the next section are listed below:

14a hList of selected veri�cation chunks 14ai�
hAssigning a new result 14bi
hChecking validity 15i

6.1 Irrecoverability, Validity and Agreement

The main distinction between termination and the other invariants is that ir-
recoverability, validity and agreement are only in question when a new result is
assigned, that is, when the error handler master receives a result from a client and
wishes to store it. Testing for irrecoverability is a matter of verifying that a re-
sult has not been previously received for the client in question. This is achieved
using an assert statement in conjunction with a bitvector of ags. Thus, the
assignment of a new result implies verifying that a result has not been set previ-
ously, before storing the clients input and resultant views in global arrays. This
is encapsulated in the following inline de�nition which comprises part of the
APPROVE user template model:

14b hInline: result assignment 14bi� (14a)
inline ASSIGN_RESULT(input_view,result,id) {
atomic {
assert(!(verification_result_set & (1<<id)));
verification_input_view[id] = input_view;
verification_output_view[id] = result;
verification_result_set = verification_result_set | (1<<id);
CHECK_VALIDITY()
CHECK_AGREEMENT() /* use inlines for validity and agreement */

}
}
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Inlines vs. Never Claims To Guarantee Validity and Agreement Note
the use of the inline statements CHECK VALIDITY and CHECK AGREEMENT in chunk
14b above. Intuitively, the validity and agreement invariants lend themselves
to expression by a Spin never claim; indeed a signi�cant amount of e�ort was
invested in pursuing this idea. Spin never claims generally apply invariants to
the global space of the model whereas in this case, the validity and agreement
invariants only apply to the client processes. It is possible for never claims to
inspect variables local to processes suggesting the idea of using a bounded do loop
to cycle through each client process checking the invariants in turn. However,
due to the assignment of the counting index, Spin objects warning that the never
claim contains side e�ects. Although in this case, the side e�ect in question is
known to be safe, it is arguable that the approach contravenes the philosophy
of the never claim and so the alternative method of using inline de�nitions was
adopted.

The mechanics of actually checking the invariants are again based around a
bounded do loop and are similar in both cases. For brevity, only the chunk which
checks for validity is presented:

15 hChecking validity 15i� (14a)
inline CHECK_VALIDITY() {
i = 0 ->
do
:: ((i < NUM_CLIENTS) && (verification_result_set & (1<<i))) ->
j = 0 ->
do
:: ((j < NUM_CLIENTS) && (verification_result_set & (1<<j)) && (i!=j)
&& (verification_input_view[i] == verification_input_view[j])) ->
assert(verification_output_view[i] == verification_output_view[j]);
j++;
:: (j == NUM_CLIENTS) -> i++; break
:: else -> j++
od

:: (i == NUM_CLIENTS) -> break
od;
}

7 Applying APPROVE: Collaborative Group Membership

Next consider the application of APPROVE to an actual agreement problem.
The example adopted is that of the Collaborative Group Membership (CGM)
algorithm i.e. the protocol to which rigorous argument was applied in our recent
work. The distinguishing feature of collaborative technologies over other group
systems is their multi-channel architecture, that is, collaborative applications
exhibit a further group abstraction which permits messages to be simultaneously
transferred using di�erent delivery semantics. As traditional group membership
algorithms were unsuitable, this prompted the development of CGM.

CGM is based on two complementary entities that are executed by all clients
to perform the actions necessary to participate in two elections [16, 13, 11]. The
error monitor is an arbitration entity that primarily maintains a log of error re-
ports from the failure detector. It also mediates the invocation of an agent which
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performs two consensual elections. The �rst of these is termed the membership
removal election and is designed to deal with fail-stop failures. Conversely, the
session election is used to detect and resolve the more subtle partial failures. In
multi-channel collaborative systems, it has been observed that part of the soft-
ware can fail i.e. the system has not crashed out-right, but is malfunctioning. In
APPROVE terminology, this agent corresponds to the error handler, that is, the
component under test. A further distinction, is that the most senior error han-
dler has the additional role of calculating and distributing the results of the two
elections and thus is the error master. In the event that the error master fails,
the next most senior group member assumes the role and if necessary restarts
the election.

The development of the initial CGM model abstracted away from the er-
ror monitor and session election, focusing primarily on the membership removal
election. When triggered, the error handler broadcasts an EL START message
followed by an EL CALL. This informs the other group members that an elec-
tion is about to take place and that they should refresh their view. Using the
quiescent failure detector, each client reliably broadcasts an EL PROBE mes-
sage to its peers. The underlying reasoning being that this will generate new
fault reports for failures that were previously undetected. Client views based on
heartbeat failure detectors can be refreshed by consulting the failure detector
directly. This returns a list of suspects in the form of a bitvector. Based on its
refreshed view, each client votes for the removal of members it deems to have
failed and sends a digest of the result to the error master via a point-to-point
EL RETURN message. Having received all of the votes, the error master deter-
mines the outcome and instructs the GMS to evict any agreed failures.

8 Results
8.1 Qualitative Analysis
Initial experiments using APPROVE quickly identi�ed two termination violations
in the model of CGM. Essentially, APPROVE demonstrated that if a failure detec-
tor based on reliable communication was used, and a failure occurred after the
EL PROBE, the error master would in�nitely wait for an EL RETURN (since at
this point, the protocol does not transmit any reliable messages and the failure
remains undetected). Several strategies exist to solve this problem using a qui-
escent reliable failure detector, but it was decided that for now the remainder of
the analysis would be conducted using a heartbeat failure detector. Recon�gur-
ing the model highlighted a second termination aw. Although new failures were
now being detected and acted upon, the occurrence of a client leave during the
election would also invalidate the termination property. Heartbeat failure detec-
tors do not announce valid departures and the GMS is unable to circulate a new
view whilst the current view is in question (i.e. an election is in progress). Thus,
the protocol design was modi�ed to include a timeout entity which circumvents
these issues and allows the error master to restart the election if necessary. Note
that this strategy also solves the �rst termination problem and so permits the
use of the failure detector based on reliable communication.

8.2 Using APPROVE to Empirically Investigate Extraneous Code
During the initial CGM design phases [16], the cost of the algorithm was approx-
imated in terms of its message complexity. Message complexity (MC) is de�ned
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by Attiya and Welch [2] as the maximum, over all admissible executions of the
total messages sent for both synchronous and asynchronous message passing sys-
tems. In terms of a CGM session with Ns participants and nf failures, MC can
be approximated to the following:

MC � (N2
s + nf (Ns � nf )) + cm + acm

where N2
s is the message complexity of the probe mechanism, nf (Ns�nf ) is due

to the resulting failure reports, cm represents a �xed number of control messages
and a indicates Ns � nf acknowledgments. From this it is evident that the
approaches message complexity is quadratic, indeed it is noteworthy to highlight
that the majority of current group membership algorithms exhibit the same
property (certainly [3] supports this view). As the CGM probing mechanism
is responsible for the quadratic overhead, this raised the question of whether
the EL PROBE message could safely be removed without introducing semantic
violations. Using APPROVE, it was now possible to formally determine whether
or not this was the case.

In addition, it was decided that these experiments would investigate AP-
PROVEs performance in relation to larger groups (i.e. between 3 and 10 clients).
The expected result, indeed the characteristic under test, is that there exists a
small linear increase in overhead for each additional client process. Note that
a session consisting of two client processes is an exception to this hypotheses
since the system is e�ectively point-to-point and so has a signi�cantly simpler
interaction. The experimental environment consists of one Pentium III desktop
machine using a 600 MHz processor and 768 Mb of RAM. In terms of software,
the PC is running Linux Mandrake 6.5 and Spin version 3.4.10. Each experiment
was conducted using the same compiler and run-time options, thus, in order
to repeat these experiments, de�ne -D POSIX SOURCE -DBITSTATE -DSAFETY
-DNOCLAIM -DXUSAFE -DNOFAIR -DVECTORSZ=4000 on the compilation line and
-X -m3000000 -w29 -c1 as the arguments to pan. Note the use of the partial

Probe enabled / NUM CLIENTS
3 4 5 6 7 8 9 10

SV 572 820 1108 1440 1808 2216 2708 3200
DR 935864 1288425 1388202 1227178 1819674 1639334 1244615 1454759
SS 2.11743 2.10856 2.26861 2.22499 2.12071 3.16569 2.70916 2.23208
T 1:25:54 1:40:50 2:32:17 2:36:55 2:56:02 6:28:39 5:56:39 4:50:41

Probe disabled / NUM CLIENTS
3 4 5 6 7 8 9 10

SV 524 724 928 1152 1388 1640 1952 2240
DR 1158358 1288748 1464371 1933316 1895244 1312446 1415283 1356739
SS 1.02681 1.89953 2.07028 2.12812 2.18374 2.25818 2.85684 2.46325
T 0:37:35 1:22:52 1:40:50 1:58:37 2:19:03 2:39:49 4:23:59 3:42:05

Table 1. APPROVE veri�cation results showing the quantitative e�ect of toggling the
CGM probe. Note the following key: SV is the state vector measured in bytes, DR is
the depth reached, SS is the number of states stored (the decimals are e+08) and T is
the averaged elapsed time (hours:minutes:seconds). All of the experiments used 219.02
Mb of memory and no errors were reported at any stage.
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Error Monitor Protocol

ELECT ELECT

FAILING FAILING

OKOK

Error Handler Protocol (Master) Actions
A1: add to log
A2: remove from / prune log
A3: log message; do not generate ER_IND
A4: decrement number of reports
A5: increment number of reports
A6: prune log for removed members
A7: set expected number of failures to 0
A8: determine number of expected failures
A9: set time−out
A10: store return and update global failure log

Predicates
P1: the log is empty
P2: failure is not in log
P3: failure is in log
P4: failure is confirmed
P5: number of reports is 0

\/ (P3 /\ !P4;
A5) \/ (P3
/\ P4; send
ER_IND)

/\ ((P2; A1)
FAIL_REP

(!P5; A4))
((P5; A2) \/

/\ !P1

FAIL_CORR /\

EL_END /\
(A6 /\ P1;
send
ER_CLEAR)

P7; send
EL_PROBE_SUCC;
send EL_END

((FAIL_CORR /\
(P5 /\ A2 /\ P1;
send ER_CLEAR))
\/ EL_RESULT);
EL_END

EL_RESULT /\

EL_REQ); A7
send EL_START;

\/ A9

send EL_PROBE

(P8 \/ P9); A12; A13
send EL_RESULT

(EL_RETURN /\
(!P7; A10)) \/ ER_IND; A11

send EL_CALL;
send EL_END

send EL_REQ) \/
((ER_IND;

(ER_IND; A8; A9)

(FAIL_REP /\
(P6; send ER_IND) \/ (!P6; A3)) \/
FAIL_CORR; A3

EL_START

(A6 /\ !P1)

FAIL_REP /\
(P1; A1)

EL_START

EL_RESULT
\/ A15

send
!P10; A14;

A11: queue ER_IND
A12: calculate membership removal result
A13: reset time−out
A14: calculate session election result
A15: resynchronize affected channels

P6: FAIL_REP resulting from an EL_PROBE
      or an EL_CALL
P7: all hosts are capable of responding
P8: expected number of returns received
P9: time−out occurs
P10: ER_IND queue is empty

Fig. 6. The amended (�nal) state transition diagrams for CGM. For fuller explanations
see [16, 13]. The Journal of Supercomputing article is the canonical CGM paper but is in
press (pre-prints available on request). The COMPSAC paper [13] gives an overview of
the original protocol theory and includes references to our proof by rigorous argument.

search. Normally, an APPROVE veri�cation is performed exhaustively using a
smaller number of clients (e.g. 3 or 4), however, studying APPROVE in the con-
text of larger groups necessitates the use of the partial search.

When the model was re-con�gured to not probe, Spin did not detect any
invariant violations, suggesting that the probe could indeed be removed. In ad-
dition, a signi�cant decrease in the overhead required to complete the veri�cation
(particularly for the larger groups) was observed. The cause for the sudden in-
crease in veri�cation time (at 8 clients) is currently being investigated. However,
this anomaly appears to pose only performance implications, as no semantic
violations were detected. During Spin guided simulations, it was noted that if
further failures occurred during an election, the CGM algorithm would simply
iterate up-to nf times. Based on these results, it was decided that the probe
would not be removed completely, but its use would be restricted to environ-
ments where failures occur in rapid succession. Under normal circumstances, the
algorithm operates without the probe yielding a linear message complexity and
less overhead in the Promela model, but, in the rare cases where failures occur in
rapid succession, the probe can be employed to avoid multiple CGM iterations.

9 Conclusion

Following the completion of APPROVE and its application to CGM, the insight
gained from the process was reected back into the original design (see �g. 6).
In terms of critique and future work, there are a number of developments which
are to be pursued:

{ A Wireless model of failure { Through the maturation of related technolo-
gies, wireless group communications is being touted as the next paradigm in
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the �eld. Currently, APPROVE supports only a fail-stop model of failure. In
the projects next phase, it is planned that APPROVE will be used to formally
investigate the e�ect of failure in the wireless domain. The distinction be-
tween the two environments is that wireless hosts often experience a level of
intermittent connectivity. Thus, traditional group communications systems
are unequipped to distinguish between temporarily dis-connected live hosts
and outright failures. In practice, this phenomenon manifests itself through
the erroneous triggering of membership algorithms suggesting that APPROVE
be employed to investigate solutions.

{ Scoped never claims { During the veri�cation process, it was noted that the
Spin never claim operated on the global state space and so was not suitable
to apply the APPROVE invariants. In future work, it may be pertinent to
investigate the notion of a scoped never claim which can apply an invariant
to a subset of processes.

{ Service based strong group communications { Based on the suggestions in the
online Spin help, APPROVE models communication at the client level, that
is, each client is responsible for the execution of the f/abcast protocols. In
the next phase of APPROVE, a service based model of group communication
will be added. This will not only provide a platform for studying transport
layer issues in the context of group communications (e.g. message loss) but
will also form the basis of a `low-fat' analysis (see Ruys' recipes [20]).

One of the most encouraging aspects of APPROVE has been the positive reac-
tion by the more practical protocol communities. Tools such as Spin have repeat-
edly demonstrated how they can be employed to tangibly improve projects. It is
hoped that through frameworks such as APPROVE, the technology transfer gap
between these communities will lessen and so, this stands as one of the APPROVE
projects long term goals.
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